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Predicting the Simulation Budget in Ranking and

Selection Procedures

SIJIA MA and SHANE G. HENDERSON, Cornell University

The goal of ranking and selection (R&S) procedures is to identify the best among a finite set of alternative

systems evaluated by stochastic simulation, providing a probability guarantee on the quality of the solution.

To solve large-scale R&S problems, especially in parallel computing platforms where variable numbers of

cores might be used, it is helpful to be able to predict the simulation budget, which is almost always the

dominant portion of the running time of a given procedure for a given problem. Non-trivial issues arise due

to the need to estimate the system configuration. We propose a set of methods for predicting the simulation

budget. Numerical results compare our predictions for several leading R&S procedures.
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1 INTRODUCTION

Stochastic simulation is commonly used in the identification of the best system from a finite set
of alternatives, where the performances of the systems are not explicitly available and can only
be measured with error or noise. An example for such a problem is ambulance planning (Maxwell
et al. 2013). The decision-makers of ambulance organizations need to decide the locations and
schedules of the ambulances to minimize a quantile of the response times. For any candidate plan,
its performance over a fixed time horizon is analytically intractable. Stochastic simulation can be
used to approximately evaluate the objective function as part of an effort to solve this optimization
problem. Such problems arise in, e.g., supply chain management (Jung et al. 2004) and transporta-
tion and public health (Banks 1998, part 4).

Ranking and selection problems arise when the number of feasible solutions is finite, and small
enough that all systems can be simulated, at least to some degree. The main issue in these problems
is how to allocate computational budget for simulation to the systems so that a statistically reliable
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choice of the best system can be determined efficiently. Methods for such problems are called
Ranking and Selection (R&S) procedures. A good R&S procedure achieves a balance between the
total running time and the quality of the ultimate selection. The R&S problem is closely related to
the multi-armed bandit (MAB) problem. An important difference is that, in MAB problems, one
typically considers the cumulative reward collected by pulling each arm (i.e., obtaining a sample
from each system) throughout the experiment, instead of focusing only on the quality of the final
decision as in R&S (Peng et al. 2018). Even in pure-exploration instances of the MAB, that have the
same overall objective as in R&S problems, different distributional assumptions are made about the
underlying arms/systems. Algorithms developed for the bandit problem usually assume bounded
or sub-Gaussian simulation outputs with a known bound on the variances, while R&S literature
typically assumes Gaussian error, using batching to approximately ensure this when needed.

Many procedures have been proposed for dealing with R&S problems. The indifference-zone
(IZ) approach, which assumes a known lower bound δ on the differences between the best sys-
tem and all other systems, comprises a rich set of procedures, dating back to the seminal work of
Bechhofer (1954) and Gupta (1956). Important example procedures include Dieker and Kim (2012),
Dudewicz and Dalal (1975), Goldsman et al. (2002), Hong (2006), Kim and Dieker (2011), Kim and
Nelson (2001), Kim and Nelson (2006), Rinott (1978), and Frazier (2014). These frequentist proce-
dures guarantee a given pre-specified probability of correct selection (PCS), i.e., of returning the
best system. There are also some recent IZ-free frequentist procedures (Fan et al. 2016) that deliver
PCS without imposing an IZ restriction. Another form of statistical guarantee is the probability
of good selection (PGS), to which we instead refer as probably approximately correct (PAC) se-
lection, in line with the multi-armed bandit literature, that works for all configurations, and not
just those that satisfy the IZ assumption; see, e.g., Nelson and Banerjee (2001) and Ni et al. (2014).
Separately, a class of Bayesian approaches has been developed, including Chen et al. (2000), that
allocates computational budget to maximize approximations of the posterior PCS. Other Bayesian
procedures (Chick and Inoue 2001a, 2001b; He et al. 2007) allocate samples to minimize the ex-
pected opportunity cost, or to maximize a measure of the expected value of information (Chick
et al. 2010).

Historically, due to limited computing capability, the interest in R&S problems primarily fo-
cuses on small-scale problems where the number of systems and the number of simulations of
each system are relatively small. Nowadays, with improvements in computing power, the intro-
duction of cloud computing and the development of efficient algorithms, much larger problems
can be solved (Luo et al. 2015, Ni et al. 2017). However, new issues also emerge as the scale in-
creases. Estimating the simulation budget, i.e., the number of replications of each system required
to make a selection is key, because simulation budget is almost always the dominant contributor
to running time, and the cost of running a task on the cloud depends on running time. Knowl-
edge of the simulation budget also helps us decide the number of cores needed for the procedure
to terminate in a reasonable time period in a parallel computing environment. For these reasons,
a methodology for simulation-budget estimation for R&S procedures is important for large-scale
problems.

The simulation budget of a procedure usually depends heavily on the configuration of the prob-
lem it is solving, i.e., the means and variances of these systems, which are unknown. Therefore a
preliminary sampling stage is needed to get some knowledge about the structure of the problem.
Non-trivial issues arise in this process. Since the sample size of the preliminary stage is usually
very small, small differences in performances of systems are usually dominated by noise. With the
naive way of estimating expectations by sample means, we tend to overestimate the differences
between the best system and the others, and hence underestimate the running time. An extreme
case is the slippage configuration in which all but one system have the same expectation and the
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other system is only a little better than the others. It is almost impossible to discern such a con-
figuration with small sample sizes, since the sample means will vary. In this article, we propose a
method to better deal with this “means-spreading” phenomenon, so that we have a better under-
standing about the true configuration of the problem. Our focus throughout the article is primarily
on estimating the means of the systems, rather than the variances, because the means tend to have
a more dramatic effect on running times. For example, to distinguish the difference between two
normal populations having means μ1 and μ2, and variances σ 2

1 and σ 2
2 , one can take n replications

of each system until a statistically significant difference is seen in the sample means. The sample
size n that is needed is on the order of (σ 2

1 + σ
2
2 )/(μ2 − μ1)2. Therefore, there is greater sensitivity

to errors in predictions of means, rather than errors in predictions of variances, explaining our
focus on means in this article.

Based on a limited sample size in the preliminary stage, it is extremely difficult to estimate
the configuration of the problem and hence the simulation budget very accurately. Even if the
system configuration is given, we still do not know the exact total number of samples due to the
randomness of simulation output. However, our goal in estimating the simulation budget is to
better allocate computing resources for solving the problem, so we only care about the order of
magnitude of the simulation budget instead of its exact value. For example, we want to be able
to predict whether the procedure will require 100 replications or 1,000 replications, rather than
100 replications or 110 replications. In the latter case, we are unlikely to alter the number of cores
allocated.

In this article, we focus on estimating simulation budgets of procedures rather than the more
desirable goal of estimating running times, partly because the two are so closely related. Moreover,
there are complexities in estimating running times that make them difficult to analyze. For exam-
ple, synchronization issues, the details of one’s parallelization scheme and the implementation of
the procedure all can heavily affect the wall-clock running time of procedures running in a parallel
computing environment. We thus focus on estimating the simulation budget, taking the pragmatic,
but not perfect, view that one can obtain an imperfect estimate of the running time by scaling sim-
ulation budgets by observed average running times per replication. This imperfect estimate does
not account for the complexities mentioned above, but it can be viewed as an “approximate lower
bound” on the running time, which suffices for our purpose.

There is an additional benefit of estimating the configuration of the problem. With a better
understanding of the problem based on preliminary samples, we may be able to improve the ef-
ficiency of the R&S procedure. For example, for procedures with free parameters, e.g., Ni et al.
(2017), taking advantage of the knowledge of the configuration helps us determine the values of
parameters (r̄ in Ni et al. (2017)) in such a way as to improve the procedure’s efficiency. And for
Bayesian procedures, the prior might be partially based on the estimated problem configuration.

The efficiency of a procedure might be impaired by the extra samples in the preliminary stage.
Indeed, for small problems that can be solved in seconds, efficiency is probably not very important,
and estimation of the running time might not be necessary. However, for large-scale problems the
improvement of efficiency can be large even with the overhead brought by the extra samples. And
there may be no need to discard the samples observed in the preliminary stage as long as we are
not using the information provided by those samples for the procedure itself, e.g., to determine
free parameters for the procedure. Therefore, we can just include those samples in the main body
of the procedure and hence nothing is wasted.

Besides estimating the running time before the whole procedure starts, we can also update our
estimate of the remaining time during the process to inform the user of progress through some
kind of “progress bar.” With more and more data observed, we expect that the estimate will be
more and more accurate.
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Our algorithm provides a point estimate of the problem configuration and the running time. One
might desire more information, through confidence regions or belief distributions on the configu-
ration, for example. Beyond repeatedly running our algorithm, we do not offer a practical method
for obtaining such, more complex, information.

The article is organized as follows. Section 2 formally states the R&S problem and characterizes
some properties of R&S procedures. Section 3 discusses two approaches for estimating the total
number of samples for a given procedure and problem. The total number of samples depends on
the estimation of ordered expectations, which is the goal of Section 4. Numerical experiments in
Section 5 validate the quality of our estimation methods. Section 6 concludes.

2 PRELIMINARIES

Suppose we have k simulated systems, from which we can take samples by simulation to evaluate
their performance. Let Xi j be the jth sample taken from System i , for i = 1, . . . ,k , j = 1, 2, . . ..
We assume Xi = (Xi j : j ≥ 1) is an i.i.d. sequence of samples drawn from N (μi ,σ

2
i ), a normal

distribution with mean μi and variance σ 2
i , and moreover, X1,X2, . . . ,Xk are independent. We

denote μ = (μ1, . . . , μk ) andσ 2 = (σ 2
1 , . . . ,σ

2
k

) as the expectation vector and variance vector, which
together are referred to as the system configuration. Our goal is to identify the system with largest
expectation with a certain given level of confidence 1 − α .

There are two primary forms of frequentist probabilistic guarantees: the probability of correct
selection (PCS) and probably approximately correct (PAC) selection. For a given confidence level
1 − α , the PCS guarantee means that the probability of choosing the best system (the system with
the highest expectation) is no less than 1 − α , if the difference between the expectations of the best
and others is greater than or equal to δ , the indifference-zone parameter. The PAC guarantee does
not require such an assumption on the configuration of the problem. It means that the probability
of selecting a system with expectation within δ of the best is no less than 1 − α .

In practice, simulation outputs may not be normally distributed, and then these probabilistic
guarantees may not necessarily hold. A commonly used strategy is to draw a batch of samples
at a time and take their mean as one output Xi j , so that the central limit theorem (CLT) en-
sures that the outputs are approximately normally distributed, and the guarantees might then hold
approximately.

The sampling rule of a R&S procedure specifies how to allocate samples to each of the k systems,
either deterministically or adaptively based on the samples that have already been observed. The
R&S procedure terminates when the observed statistics are sufficient to deliver the pre-specified
probabilistic guarantee. The sampling rule and stopping rule are designed to ensure the validity of
the procedure, and together determine the efficiency of the R&S procedure, i.e., how many samples
are needed to identify the best system.

Most efficient R&S procedures adopt an elimination strategy, i.e., identifying inferior systems
to eliminate during the procedure as more samples are observed, so that those eliminated systems
will not be considered as candidates and will no longer be sampled. At the end of the procedure,
all but one system are eliminated, and the sole survivor is selected as the best.

3 ESTIMATING THE TOTAL NUMBER OF SAMPLES

R&S procedures essentially are composed of three tasks: (1) deciding the number of samples to
draw from each system, (2) running simulations, and (3) screening (making elimination decisions),
which includes computing and comparing statistics based on the simulation results. Usually, the
computational cost for task (2) dominates, especially for large-scale problems, which is our focus
in this article. Therefore, the essential question to ask in estimating the running time is how many
samples are needed for the procedure to terminate and how long one replication takes.
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The number of samples depends on the configuration of the given problem, i.e., the expectation
vector μ and the variance vector σ 2, which are both unknown. Therefore, we use a preliminary
stage to estimate the system configuration; see Section 4. For now, we just assume that we have
already obtained an estimate of the system configuration, based on which we present two ap-
proaches for estimating the total number of samples: (1) a first-order estimate and (2) simulating
the simulation process. The first approach simplifies the problem by ignoring the fluctuation in
elimination time due to randomness in samples. The second approach simulates the whole R&S
procedure, but instead of simulating the systems to get samples, it generates normally distributed
samples directly from the estimated problem configuration.

In the preliminary stage, we estimate both the system configuration and the average simulation
time T̄ , i.e., the amount of time spent taking one sample. Then the estimated total running time

T̂total is given by

T̂total = N̂T̄ ,

where N̂ is the estimated total number of samples. When the simulation time varies from system
to system, we record T̄i ’s separately for each System i , and then

T̂total =

k∑
i=1

N̂iT̄i ,

where N̂i is the estimated number of samples from System i .
In a parallel computing environment, other issues such as latency and synchronization also

affect scalability and wall-clock time. Both highly depend on the algorithm itself, its implemen-
tation and the configuration of the problem. We ignore those issues, so that we get what might
be viewed as an approximation of a lower bound on the running time when we convert our esti-
mation to the parallel computing environment directly by dividing the total running time by the
number of cores. In general, one might first estimate the total running time with our methodology,
and second, decide the number of cores needed to finish the job in an acceptable time.

3.1 First-order Estimate

Under our assumptions the accumulated sums of the system outputs (Yi (n) : n ≥ 0) with

Yi (n) =
n∑

j=1

Xi j , i = 1, . . . ,k,

or the differences between pairs of such accumulated sums are random walks with normally dis-
tributed increments. R&S procedures explicitly (Hong 2006; Kim and Nelson 2001) or implicitly
(Frazier 2014) define a continuation region, whereby a system is eliminated once the correspond-
ing random walk hits the boundary f (n,θ ) of the continuation region, where the parameter θ
can involve statistics of the outputs, e.g., sample variances or accumulated sums of other systems.
Hence, estimating Ni , the total sample size of System i , is equivalent to the problem of estimating
a first-passage time of the corresponding random walk.

The expected first-passage time for simple cases (e.g., constant and linear boundaries) are well-
understood, but other than that, closed-form formulae for few boundaries are known (Kahale 2008).
For mathematical tractability, we simplify the problem to a first-order estimate, which means re-
placing the random walks (Yi (n),n ≥ 0) by linear functions (yi (n) = nμi ,n ≥ 0). In other words,
we ignore the fluctuation of the random walks when estimating the first-passage time.
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Why is this reasonable? The law of the iterated logarithm (Breiman 1992; Varadhan 2007) es-
tablishes that when σi > 0,

lim sup
n→∞

|Yi (n) − μin |
σi

√
n log logn

=
√

2, a.s.

Therefore for systems with large total sample size Ni , it is rare to see fluctuations go beyond the

order of
√
n log logn in magnitude, and the drift μi dominates. Therefore, relatively speaking, the

performance of those systems will be close to their expected performance. When we focus on
large-scale problems, most of the samples are contributed by those systems with large Ni , and so
this simplification is reasonable. In addition, R&S procedures are designed to eliminate inferior
systems based on their expectations irrespective of their variances, and so continuation regions
are designed to be large enough to identify the average performance, irrespective of fluctuations,
with high probability. Hence, it seems reasonable to neglect the randomness in determining when
the random walk exits the continuation region. We will later see in numerical experiments that
this seemingly rough simplification usually gives good results.

3.2 Simulation of the Simulation Process

Based on the estimated system configuration, we can simply run the whole R&S procedure for the
original problem, replacing simulation by samples from a normal distribution with our estimated
expectations and variances. In other words, we “simulate” the whole R&S procedure. Actually,
this strategy has been used before to test R&S procedures, e.g., Kim and Nelson (2001) and Frazier
(2014).

Usually R&S procedures spend a majority of their running time on simulations, which is skipped
in this approach. Therefore, we expect it to be faster than the procedure itself, which is essential.
The screening time of some R&S procedures isO (k2), for example, the original KN procedure (Kim
and Nelson 2001) and (Hong 2006). For those procedures, this simulation approach may take a long
time for large-scale problems, compared to those procedures with screening times that are linear
(Frazier 2014; Hong et al. 2016) or approximately linear (Ni et al. 2017) in the number of systems.
In these O (k2) procedures, we recommend using the first-order estimate approach if k is large.

4 ESTIMATION OF THE ORDERED EXPECTATIONS

4.1 Issues with Naive Estimation

As we see from the previous section, the estimation of the total number of samples N depends on
the configuration (μ,σ 2) of the problem. The configuration is unknown, so we use a preliminary
stage in which we sample each system n0 times. For most R&S procedures that deal with unknown
variances, there is such a stage for estimating variances. We can just make use of those samples
taken for estimating variances for our preliminary stage so that no extra samples should be taken.
However, if the estimate of running time will be used for determining the value of some free
parameters in the R&S procedure, then usually those samples have to be dropped to ensure the
statistical guarantee.

Recall that our goal is to answer questions like, how many samples are needed for the best
system to eliminate the second best one. Therefore, instead of estimating the μi ’s, we only care
about estimating the ordered expectations μ (i ) ’s without the need to know their identities. For σ 2

i ’s,
we use sample variances as our estimators and pair them, in the natural way, with the ordered
expectations by the order of the corresponding sample means. For example, if the sample mean
X̄i (n0) of System i is the second largest, we pair its sample variance S2

i with the estimated second-
largest ordered expectation μ̂ (2) . The same pairing strategy can be used for the average simulation
time T̄i as well.
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Fig. 1. Histograms of expectations and sample means under the following configurations: SC (row 1) and

RPI (row 2). k = 1,000, δ = 0.1, σ 2
i = 25, n0 = 50.

With n0 samples from each of the systems, the most straightforward estimators of their expecta-
tions are the sample averages X̄i (n0), i = 1, 2, . . . ,k . Each sample average is an unbiased estimator
of the expectation, but the estimated expectations tend to “spread out,” so the ordered sample av-
erages are not unbiased estimators of the ordered expectations. An extreme case is the slippage
configuration (SC), in which μ1 = δ μi = 0, ∀i � 1, where σ 2

i = σ 2 are equal. The sample means are

independent and normally distributed with variance σ 2/n0, hence the differences between their
true means are exaggerated. We call this phenomenon “means-spreading.” Histograms of expec-
tations and sample means are given as illustration in Figure 1. The first row is for the SC, and the
second row is for the random problem instances (RPI) configuration, where μi ∼ N (0, 4δ 2) and are
independent in i . As we can see, the sample means of both configurations in the right-hand panels
are more spread out than their corresponding true expectations in the left-hand panels.

In general, for any configuration of the problem,

Emax
i

X̄i ≥ max
i

EX̄i = max
i

μi , and

Emin
i

X̄i ≤ min
i

EX̄i = min
i

μi ,

suggesting that means-spreading is ubiquitous. (We will later characterize the difference between
Emaxi X̄i and maxi μi .) It is therefore reasonable to expect that we are being overly optimistic
if we treat the sample means as true expectations, since the advantage of the best system over

other systems is magnified, leading to an underestimation of N̂ . For configurations in which the

expectations are close to each other, e.g., SC, the estimated total number of samples N̂ can be
tremendously smaller than what is needed, as we will see in numerical experiments.

The impact of means-spreading depends on how clustered the true expectations are relative to
their true variances. If the expectations are very close to each other and the variances are large,
then the sample means will be very spread-out. In general, for a fixed δ , the smaller the differences
between the expectations and the larger the variances, the harder the problem, in the sense that it
usually takes more samples to find the best system.
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4.2 Regression Method for Estimating the Ordered Expectations

We have seen that recovering the ordered expectations solely from the sample means X̄i (n0)
can perform badly. Fortunately, we have the full process: (Xi j , i = 1, 2, . . . ,k,n = 1, 2, . . . ,n0) and
hence (X̄i (n), i = 1, 2, . . . ,k,n = 1, 2, . . . ,n0). Our goal is to understand the relation between or-
dered sample means and the ordered true expectations, especially those around Emaxi X̄i versus
maxi μi .

First, consider the case where all the μi are the same. Assuming all Xi ’s are independent and
normally distributed, the distribution function of M = M (n) = maxi=1, ...,k X̄i (n) is given by

FM (x ) = P (M (n) ≤ x )

=

k∏
i=1

P (X̄i (n) ≤ x )

=

k∏
i=1

Φ

(
x − μ
σi/
√
n

)
.

The probability density function of M is then

fM (x ) =
d

dx

k∏
i=1

Φ

(
x − μ
σi/
√
n

)

=

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x − μ
σj/
√
n

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x − μ
σi/
√
n

)
1

σi/
√
n
.

Therefore,

EM (n) =

∫ ∞

−∞
x

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x − μ
σj/
√
n

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x − μ
σi/
√
n

)
1

σi/
√
n
dx

= μ +
1
√
n

∫ ∞

−∞
y

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
y

σj

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
y

σi

)
1

σi
dy

(
let y =

x − μ
1/
√
n

)

= μ +
C
√
n
,

where

C = C (σ ) =

∫ ∞

−∞
x

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x

σj

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x

σi

)
1

σi
dx

is a constant that does not depend on n.
The value of C is usually unknown, since we do not know the variances σi . However, we do

not need to calculate it explicitly, since we only care about the expectation μ. For each n, the
corresponding largest sample mean M (n) is known from the data, and so we can apply linear
regression to estimate μ, using the model M (n) = μ +Cx (n) with x (n) = n−1/2 to get an unbiased
estimator of μ, which is the estimate of the intercept. An illustration of the regression method is
given in Figure 2. In this example, the intercept of the fitted line, which is also the estimated μ̂, is
0.02, which is very close to its true value 0.
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Fig. 2. Regression method to estimate μ when all μi = μ = 0 and σ 2
i = σ 2 = 4 are equal. Here, k = 1,000 and

n0 = 50. The estimated μ̂ = 0.08.

For general configurations, we similarly have

FM (x ) =
k∏

i=1

Φ

(
x − μi

σi/
√
n

)
,

and

fM (x ) =
k∑

i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x − μ j

σj/
√
n

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x − μi

σi/
√
n

)
1

σi/
√
n
,

so that

EM (n) =

∫ ∞

−∞
x

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x − μ j

σj/
√
n

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x − μi

σi/
√
n

)
1

σi/
√
n
dx

= μ (k ) +
1
√
n

∫ ∞

−∞
y

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
y −
√
n(μ j − μ (k ) )

σj

)⎤⎥⎥⎥⎥⎥⎦
× ϕ

(
y −
√
n(μi − μ (k ) )

σi

)
1

σi
dy

(
let y =

x − μ (k )

1/
√
n

)

= μ (k ) +
D (n)
√
n
,

where

D (n) = D (n, μ,σ )

=

∫ ∞

−∞
x

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x −
√
n(μ j − μ (k ) )

σj

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x −
√
n(μi − μ (k ) )

σi

)
1

σi
dx .

In this case, the slope D (n) is not constant. Moreover, its expression is complicated and math-
ematically intractable. What if we simply treat it as constant in n and apply linear regression as
with the case of identical expectations? Denoting μ̂ (k ) as our estimator of μ (k ) by linear regression,
the following theorem can help us understand the relation between μ̂ (k ) and μ (k ) .

Theorem 1. D (n) is non-negative, non-increasing in n, and

lim
n→∞

D (n, μ,σ ) = C (σ̃ ),

where the components of σ̃ are those σi ’s whose corresponding μi ’s are equal to μ (k ) .
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Remark: The dimension of σ̃ will usually be smaller than k . For example, if there are three
systems with expectation equal to μ (k ) , then the dimension of σ̃ is 3, and implicit in our notation
is the fact that we evaluate C with k = 3.

We use stochastic domination to prove this theorem. Recall that X is said to be smaller than X ′

in the usual stochastic order (denoted by X ≤st X
′) if

F ′(x ) ≤ F (x ) ∀x ∈ R,
where F and F ′ are the cumulative distribution function of X and X ′, respectively.

Proof. (Theorem 1)
First, since

μ (k ) +
D (n)
√
n
= E max

i=1, ...,k
X̄i (n) ≥ max

i=1, ...,k
EX̄i (n) = μ (k ),

D (n) ≥ 0. Second,

D (n) =

∫ ∞

−∞
x

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x −
√
n(μ j − μ (k ) )

σj

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x −
√
n(μi − μ (k ) )

σi

)
1

σi
dx

= EM̃,

where M̃ = maxi=1, ...,k X̃i , X̃i ∼ N (
√
n(μi − μ (k ) ),σi ). The distribution function of M̃

FM̃ (x ) =

k∏
i=1

Φ

(
x −
√
n(μi − μ (k ) )

σi

)

is non-decreasing in n for all x , since Φ is an increasing function and μi − μ (k ) ≤ 0, ∀i , so the corre-

sponding random variables are non-increasing in the usual stochastic order. Therefore,D (n) = EM̃
is non-increasing. See Section (1.A.7) of Shaked and Shanthikumar (2007).

In addition, since

lim
n→∞

Φ

(
x −
√
n(μ j − μ (k ) )

σj

)
=
⎧⎪⎨⎪⎩

Φ
(

x
σj

)
, μ j = μ (k )

1, μ j < μ (k )

,

lim
n→∞

ϕ

(
x −
√
n(μi − μ (k ) )

σi

)
=

{
ϕ

(
x
σi

)
, μi = μ (k )

0, μ j < μ (k )
,

lim
n→∞

D (n, μ,σ ) = lim
n→∞

∫ ∞

−∞
x

k∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∏
j�i

Φ

(
x −
√
n(μ j − μ (k ) )

σj

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x −
√
n(μi − μ (k ) )

σi

)
1

σi
dx

=

∫ ∞

−∞
x

∑
i :μi=μ (k )

⎡⎢⎢⎢⎢⎢⎣
∏

j�i,μ j=μ (k )

Φ

(
x

σj

)⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x

σi

)
1

σi
dx

= C (σ̃ ),

where the components of σ̃ are those σi ’s whose corresponding μi ’s are equal to μ (k ) . The second
equality can be justified by the Monotone Convergence Theorem, sinceD (n, μ,σ ) is monotonically
decreasing in n. �

By Theorem 1, the slope D (n) is non-negative, non-increasing with n and hence non-decreasing
with 1

n
. Since our goal is to estimate the intercept of the linear function, in other words, the limit

of EM (n) when n → ∞, if we treat D (n) as a constant, our estimator μ̂ (k ) underestimates the true
highest expectation μ (k ) . The larger n, the closer D (n) to its limit, so using M (n) with larger n in
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Fig. 3. Regression method to estimate μ (k ) when all σ 2
i = 4 are equal and μi are independently and normally

distributed with standard deviation equal to 0.2. We subtract maxi μi from μi , i = 1, 2, . . . ,k to ensure that

μ (k ) = 0. Here, k = 1,000 and n0 = 50. Only the last 25 data points are used for regression. The estimated

μ̂ (k ) = −0.22.

regression leads to lower bias. However, fewer data points brings higher variance, so there is a
tradeoff between bias and variance over the number of data points used for regression. A practical
rule of thumb that has had reasonable performance in our experiments is to use the second half
of the data points, e.g., (M (n),n = 26, 27, . . . , 50) for n0 = 50. An illustration is given in Figure 3,
where the estimated μ̂ (k ) = −0.22.

In our linear regression model, we use M (n) in place of EM (n). However, using only one obser-
vation leads to high variance, especially for the case wheren is small. If we have more observations
of M (n), then we can obtain a better estimate of EM (n) and hence make our estimation on μ (k )

more reliable. Limited to the sample size of the preliminary stage, we only have n0 samples for
each system. However, noticing that all the samples are generated independently and there is no
specified order, we can use bootstrapping, e.g., we can shuffle the samples by randomly reorder-
ing them for each system to generate more data points M (n)’s for our regression, to make the
estimation more stable. Denoting the number of shuffles by nshuffle, for each j = 1, 2, . . . ,nshuffle,
we randomly reorder the samples for each system independently and compute the largest sample

mean for the first n samples M (j ) (n), n = 1, 2, . . . ,n0. Define M̄ (n) = 1
nshuffle

∑nshuffle

j=1 M (j ) (n). Using

M̄ (n) instead of M (n) gives a more accurate estimator of EM (n) and hence a more stable μ̂ (k ) ; see
Figure 4.

The same idea applies to all of the ordered expectations μ (i ) , i = 1, 2, . . . ,k . For each i , letting
Mi = Mi (n) = X̄ (i ) (n) be the ith smallest sample mean, its probability density function is given by

∑
r ∈R

⎡⎢⎢⎢⎢⎢⎣
i−1∏
j1=1

Φ

(
x − μr (j1 )

σr (j1 )/
√
n

)⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

k∏
j2=i+1

(
1 − Φ

(
x − μr (j2 )

σr (j2 )/
√
n

))⎤⎥⎥⎥⎥⎥⎦ ϕ
(
x − μr (i )

σr (i )/
√
n

)
1

σr (i )/
√
n
,

where R is the set of permutations of 1, 2, . . . ,k . Using the similar change of variable y =
x−μi

1/
√

n
,

we get

EMi (n) = μ (i ) +
Di (n)
√
n
,

Hence, we can estimate μ (i ) with linear regression as we did for M = Mk , although Di (n) is not
necessarily monotone in n.
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Fig. 4. Regression method to estimate μ (k ) when all σ 2
i = 4 are equal and μi are normally distributed with

standard deviation equal to 0.2, and μ (k ) = 0. Here, k = 1,000 and n0 = 50. Only the last 25 data points are

used for regression. The estimated μ̂ (k ) = −0.14.

Unfortunately, μ̂ (i ) , the estimate of the ith order statistics, may not be monotonically increasing

in i . Therefore, in practice, we further process the estimates μ̂ (i ) by taking μ̂M
(i )
= maxj=1, ...,i μ̂ (j ) to

enforce monotonicity.
We are estimating the ordered means, so we want the variance of the differences between sys-

tems to be small. In practice, we recommend using common random numbers (CRN) for the initial
stage to enhance the accuracy of the estimation. When CRN is employed, in the shuffling step,
instead of shuffling each system’s replications independently, we shuffle the replications across all

systems together. More specifically, if X
j =

(
Xi j : i = 1, 2, . . . ,k

)
, then we randomly select from

X
1,X2, . . . ,Xn0 .

4.3 Convex Combination of Naive and Regression Estimators

As stated previously, μ̂ (k ) underestimates the true highest expectation μ (k ) . Similarly, we can prove
that μ̂ (1) overestimates the true lowest expectation μ (1) . In general, intuitively and empirically, the
estimated ordered expectations are condensed relative to the true configuration, which means that
the estimated expectations will be closer to each other than the true expectations.

However, mean-spreading tells us that the ordered sample means are not condensed, but rather,
spread out. That inspires us to combine these two consistent estimators to construct a less biased
estimator. Here, we consider the linear combination (LC) estimator,

ν̂ = ρμ̂M + (1 − ρ)M,

where ν̂ is our new estimator of the ordered expectations, μ̂M = (μ̂M
(1)
, . . . , μ̂M

(k )
)T is the vector

of the monotone regression estimators of the ordered expectations, M = (M1 (n0), . . . ,Mk (n0))T

is the vector of ordered sample means of the first n0 samples, and ρ is a coefficient. To find an
appropriate value of ρ for given vectors μ̂M and M , we want to be able to measure how close ν̂
is to the true ordered expectations, but these are unknown. However, we can take advantage of
the ordered sample means in the sense that if two expectation vectors are close, then the ordered
sample means they generate should also be close. For two ordered sample mean vectors x̄ and ȳ,
we define the distance between them to be the L2 norm of their difference:

‖x̄ − ȳ‖ =
⎡⎢⎢⎢⎢⎣

k∑
i=1

(x̄ (i ) − ȳ(i ) )
2
⎤⎥⎥⎥⎥⎦

1/2

.
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Fig. 5. Ordered expectations and the values of estimators. The red curve is the true ordered means, the blue

curve is the naive estimator mi , the green curve is the regression estimator μ̂ (i ) and the black curve is the

linear combination estimator μ̃ (i ) . All σ 2
i = 4 are equal and μi are independent and normally distributed with

standard deviation equal to 0.2. Here, k = 10,000 and n0 = 50. The coefficient ρ = 0.48.

We enumerate ρ from 0 to 1 in steps of length 0.02 to find the best coefficient. For each ρ,
we first compute the corresponding ν̃ , and generate ngen sample means independently based on

it, with the corresponding σ̂ 2
i/
√
n0 as variance, then compute the average distance from those

generated ordered sample means to the true ordered sample means M . In our experiments, we set
ngen = 100. Finally, we select the ρ that minimizes this value, and take the corresponding ν̃ as our
final estimator. As illustrated in Figure 5, comparing to the true ordered means, the naive estimator
is more spread-out and the regression estimator is more condensed, while the linear combination
of these two estimators with optimal coefficient ρ = 0.4 appears to be very close to the true values.

One might be tempted to simply set ρ = 0.5, which may be more efficient. However, the optimal
ρ can be close to 0 when the means of the systems are spread-out, or close to 1 when the means
of the systems are close to one another. In these cases, setting ρ = 0.5 does not yield accurate
predictions. In addition, as we will show in numerical experiments, the time spent on predicting
runtimes, including the time spent calculating a good choice of ρ, is negligible compared to the
total running time of the R&S procedure.

Thus, we have a final estimator that appears to work much better than the original naive esti-
mator. The whole algorithm is summarized below.

Estimation of the Ordered Expectations.

(1) Generate n0 samplesXi j , j = 1, 2, . . . ,n0 from each system i = 1, 2, . . . ,k . Compute X̄i (n0)

and σ̂ 2
i for each i . LetMi (n0) = X̄ (i ) (n0) and r (i ) be the corresponding index, i.e.,Mi (n0) =

X̄r (i ) (n0).
(2) For j = 1, . . . ,nshuffle,

(a) For i = 1, . . . ,k ,

(i) ShuffleXi j , j = 1, . . . ,n0 and getX (j )
i�
, � = 1, . . . ,n0, where � is the new index after

shuffling.

(ii) Compute X̄ (j )
i (n) = 1

n

∑n
�=1 X

(j )
i�

for n = 1, . . . ,n0.

(b) Compute the ordered sample means M (j )
i (n) = X̄ (j )

(i )
(n) for i = 1, . . . ,k , n = 1, . . . ,n0.

(3) Compute M̄i (n) = 1
nshuffle

∑nshuffle

j=1 M (j )
i (n) for i = 1, . . . ,k , n = 1, . . . ,n0.

(4) Apply linear regression to calculate μ̂ (i ) using M̄i (n),n = �n0

2  + 1, . . . ,n0, for i = 1, . . . ,k .

(5) Enforce monotonicity by computing μ̂M
(i )

.
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(6) For ρ = 0, 0.02, . . . , 1,
(a) Compute ν̂ = ρμ̂M + (1 − ρ)M .
(b) For j = 1, . . . ,ngen,

(i) Generate Ȳi ∼ N (ν̂i , σ̂ 2
r (i )/
√
n0) for i = 1, . . . ,k , independently.

(ii) Compute D j (ρ), the L2 distance between (Ȳ(1), Ȳ(2), . . . Ȳ(k ) )
T and

M = (M1 (n0),M2 (n0), . . . ,Mk (n0))T .
(c) Compute the average L2 distance D (ρ) = 1

ngen

∑ngen

j=1 D j (ρ).

(7) Find ρopt = argminρD (ρ) and let ν̂ = ρoptμ̂M + (1 − ρopt)M be our estimate of the ordered

true means. The estimate of the corresponding variances is (σ̂ 2
r (1), σ̂ 2

r (2), . . . , σ̂ 2
r (k ) )

T .

4.4 Statistical Properties of the Estimators

In this section, we give some theoretical support for the estimators. Specifically, we establish con-
sistency and identify the rate of convergence of the naive estimator Mi (n0), the regression estima-
tor μ̂ (i ) and hence the LC estimator ν̂i . For simplicity, we analyze simpler forms of the estimators
that exploit neither the shuffling of samples for generating more data points, nor the enforcing of
monotonicity. In proving these results, we relax the normality assumption, since the results hold
more generally. To simplify indexing notation, in this section, we assume, unbeknownst to our
procedure, that μ1 ≤ μ2 ≤ · · · ≤ μk . We impose different subsets of the following conditions in the
results to follow.

A0 Means are unique: μ1 < μ2 < · · · < μk .
A1 Sequences are iid with finite mean: Xi = (Xi j : j ≥ 1) is an i.i.d. sequence with finite
mean μi , for each i = 1, . . . ,k .
A2 Finite second moments: E(X 2

i1) < ∞, so that the variance, σ 2
i , is finite, i = 1, 2, . . . ,k .

A3 Finite fourth moments: E(X 4
i1) < ∞, i = 1, 2, . . . ,k .

A4 Mutual independence: X1,X2, . . . ,Xk are independent.

Proposition 1. Fix i ∈ {1, 2, . . . ,k }. If conditions A0, A1 hold, then the naive estimator Mi (n) is

a strongly consistent estimator of μi , for each i = 1, 2, . . . ,k . If conditions A0–A2 hold, then we have

the central limit theorem, √
n(Mi (n) − μi ) ⇒ σiN (0, 1),

as n → ∞. If conditions A0–A3 hold, then the mean squared error of Mi (n) is O (n−1).

Notice that we assume neither normality nor mutual independence; the result is more general,
and covers these special cases. The assumption of finite fourth moments for the mean-squared er-
ror result is potentially stronger than needed, but permits a straightforward proof, and is standard;
see, e.g., Glynn and Heidelberger (1990). Here, we assume the uniqueness of means, condition A0,
but we relax that condition in Proposition 2 in the Appendix, leading to qualitatively similar re-
sults that are more complicated to establish. For example, the limiting distribution in the central
limit theorem changes.

Proof. Let X̄i (n) = n−1 ∑n
j=1 Xi j be the nth sample mean from System i . This does not neces-

sarily equal Mi (n), since Mi (n) is the ith smallest sample mean. These two quantities agree on the
event, Bi (n) say, where X̄i (n) is the ith smallest of the sample means X̄1 (n), . . . , X̄k (n), i.e., it is
ranked correctly, and may differ otherwise.

To establish consistency, the strong law of large numbers and the fact that k is finite ensure that
maxk

q=1 |X̄q (n) − μq | → 0 as n → ∞ a.s. Hence, since the μqs are unique, the event Bi (n) occurs

eventually a.s., i.e., there exists a (random) N such that for all n ≥ N , Bi (n) occurs a.s. Moreover,
on the event Bi (n), Mi (n) = X̄i (n).
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To establish the central limit theorem, let I{B} denote the indicator of the eventB that equals 1 on
the event and 0 otherwise. As noted above, I{Bi (n)} = 1 for sufficiently large n (for n ≥ N ) a.s., so
that the indicator of the complement, I{Bc

i (n)} = 0 for n ≥ N a.s.. Define Ei (n) =
√
n (Mi (n) − μi ).

Then
Ei (n) =

√
n(X̄i (n) − μi )I{Bi (n)} + Ei (n)I{Bc

i (n)},
and the result now follows from the ordinary central limit theorem and Slutsky’s theorem.

To establish the mean-squared error result, we write

Ei (n) =
√
n(X̄i (n) − μi ) +

√
n(Mi (n) − X̄i (n))I{Bc

i (n)}.

The inequality (a + b)2 ≤ 2a2 + 2b2 gives

E(Ei (n)2) ≤ 2nE(X̄i (n) − μi )2 + 2nE
[
(Mi (n) − X̄i (n))2I{Bc

i (n)}
]
. (1)

The first term in Equation (1) equals 2σ 2
i . For the second term, the Cauchy-Schwarz inequality,

together with the fact that Mi (n) is equal to X J (n) for some (random) J gives

2nE
[(
Mi (n) − X̄i (n)

)2
I{Bc

i (n)}
]

≤ 2nE
[(
Mi (n) − X̄i (n)

)4
]1/2

P (Bc
i (n))1/2

≤ 2n ���
∑
j�i

E
[(
X̄ j (n) − X̄i (n)

)4
]1/2���

���
∑
j>i

P (X̄ j (n) − X̄i (n) < 0) +
∑
j<i

P (X̄ j (n) − X̄i (n) > 0)���
1/2

.

We used the fact that Bc
i (n) ⊆ {⋃j>i {X̄ j (n) − X̄i (n) < 0} ∪⋃

j<i {X̄ j (n) − X̄i (n) > 0}}. The term

E[(X̄ j (n) − X̄i (n))4], by direct calculation, is O (1). Chebyshev’s inequality applied to the remain-
ing terms yields the bound

2nO (1) ���
∑
j�i

var (X̄ j (n) − X̄i (n))

(μ j − μi )2

���
1/2

= 2nO (1) ���
∑
j�i

var (X j − Xi )

n(μ j − μi )2

���
1/2

= O (1),

concluding the proof. �

Turning now to the regression estimator, let x j = j−1/2 and yj = Mi (j ) for j ≥ 1. Assume that n
is even, for notational simplicity. Define

x̄ =
1

n/2

n∑
j=n/2+1

x j ,

so that x̄ is a mean of the x j values. Similarly, define ȳ,xy and x2, so that, for example,

xy =
1

n/2

n∑
j=n/2+1

x jyj .

The regression estimator is they intercept of the estimated regression line, and can thus be written
as

μ̂i (n) =
x2ȳ − x̄xy
x2 − x̄2

. (2)
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Theorem 2. Fix i ∈ {1, 2, . . . ,k }. If condition A1 holds, then the regression estimator μ̂i (n) is a

strongly consistent estimator of μi as n → ∞. If conditions A0–A2 hold, then it satisfies the central

limit theorem,
√
n(μi (n) − μi ) ⇒ ηN (0, 1),

where the variance constant η2 is approximately 8.4144σ 2
i . If conditions A1–A3 hold, then its mean-

squared error is O (n−1).

We assume uniqueness of the means to establish the central limit theorem, because the argu-
ment is involved; we conjecture that a version of the central limit theorem holds without that
assumption.

Proof. To establish consistency, write

μ̂i (n) = ȳ +
x̄2 (xy/x̄ − ȳ)

x2 − x̄2
. (3)

From Proposition 2 in the Appendix, we know that under A1, Mi (n) → μi as n → ∞ a.s. It immedi-
ately follows that ȳ → μi and xy/x̄ → μi as n → ∞ a.s. For two real-valued sequences (an : n ≥ 1)
and (bn : n ≥ 1), we write an ∼ bn if an/bn → 1 as n → ∞. Approximating sums by integrals,

x̄ =
2

n

n∑
j=n/2+1

j−1/2 ∼ 2

n

∫ n

n/2

x−1/2 dx =
β1√
n
,

x2 =
2

n

n∑
j=n/2+1

j−1 ∼ β2

n
,

x2 − x̄2 ∼ β3

n
, and

x̄2

x2 − x̄2
∼ β2

1/β3,

where the constants β1 = 4 − 2
√

2, β2 = 2 ln(2), and β3 = β2 − β2
1 . These observations, together

with the representation Equation (3), yield consistency.
We prove the mean-squared error result before the central limit theorem. Recall that we defined

Ej so that yj = μi +
Ej√

j
. Using this definition in Equation (2),

μ̂i (n) =
x2ȳ − x̄xy
x2 − x̄2

=
x2

[
μi +

2
n

∑n
j=n/2+1 j

−1/2Ej

]
− x̄

[
x̄ μi +

2
n

∑n
j=n/2+1 j

−1Ej

]
x2 − x̄2

= μi +

n∑
j=n/2+1

2x2j−1/2 − 2x̄ j−1

n(x2 − x̄2)
Ej

= μi +

n∑
j=n/2+1

cn, jEj , (4)

where cn, j = O (n−3/2) using the order-of-magnitude results above.
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Thus, using the fact that E(E2
n ) = O (1) from Equation (6) in the proof of Proposition 2 in the

Appendix, Equation (4) yields

E[(μ̂i (n) − μi )2] = E

⎡⎢⎢⎢⎢⎢⎣
n∑

j=n/2+1

cn, jEj

⎤⎥⎥⎥⎥⎥⎦
2

= O (1)
n∑

j=n/2+1

n∑
m=n/2+1

cn, jcn,m

= O (1)O (n2)O (n−3)

= O (n−1),

giving the mean-squared error result.
Turning to the central limit theorem, by consistency and the fact that the means are assumed

unique, there exists (random) N such that for all j ≥ N ,Mi (j ) = X̄i (j ). Thus, I{n/2 ≥ N } converges
to 1 almost surely, and Equation (4) gives

√
n(μ̂i (n) − μi ) = I{n/2 ≥ N }

√
n

n∑
j=n/2+1

cn, jEj + I{n/2 < N }
√
n(μ̂i (n) − μi ).

The second term in this expression is eventually equal to 0 and the indicator in the first expres-
sion is eventually equal to 1. It therefore suffices to focus attention on the summation in the first
expression. Moreover, on the event {n/2 ≥ N }, Ej =

√
j (X̄i (j ) − μi ) for j ≥ n/2, and then (on that

event),

√
n

n∑
j=n/2+1

cn, jEj =

n∑
j=n/2+1

cn, j

√
nj (X̄i (j ) − μi )

=

n∑
j=n/2+1

cn, j

√
n/j

j∑
m=1

(Xi (m) − μi )

=

n∑
m=1

���
n∑

j=max(n/2+1,m)

cn, j

√
n/j��� (Xi (m) − μi )

=

n∑
m=1

an,m (Xi (m) − μi ),

for appropriately defined constants an,m , where we changed the order of summation in the second-
to-last step. We can now apply the Lindeberg-Feller Central Limit Theorem; see, e.g., Theorem 27.2
of Billingsley (1995). Verifying the Lindeberg condition is straightforward; it follows exactly the
same lines as the discussion of (27.9) in that text. The central limit theorem we desire, therefore,
follows using the magnitude of the constants an,m that we determine next, and has variance given
by

σ 2
i lim

n→∞

n∑
m=1

a2
n,m . (5)
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It remains to obtain the expression for the variance. To that end,

an,m =

n∑
j=max(n/2+1,m)

cn, j

√
n/j

= 2
√
n

n∑
j=max(n/2+1,m)

x2j−1 − x̄ j−3/2

n(x2 − x̄2)

∼ 2
√
n

β3

n∑
j=max(n/2+1,m)

(β2n
−1j−1 − β1n

−1/2j−3/2).

Using an integral to asymptotically approximate the sum shows that form ≤ n/2,

an,m ∼
2β2 ln(2) − 4β1 (

√
2 − 1)

β3
√
n

=
β4√
n
,

and form > n/2,

an,m ∼
2

β3
√
n

(
β2 ln(n/m) − 2β1

(√
n/m − 1

))
.

We now use an integral once more to obtain the asymptotic form of Equation (5). This step involves
considerable but tedious algebra. A symbolic manipulator yields the expression

σ 2
i [−512

√
2 + 2208

√
2 ln2 (2) − 904

√
2 ln3 (2) + 80

√
2 ln4 (2) + 2688 ln2 (2) − 1392 ln3 (2) + 84 ln4 (2)

− 4 ln5 (2) − ln(2) (384
√

2 − 256) − 1024]/(ln2 (2) − 24 ln(2) + 16)2,

which evaluates to 8.4144σ 2
i . �

The observation in Theorem 2 that the asymptotic variance of the regression estimator (that
appears in the central limit theorem) is larger than that of the naive estimator should not be too
surprising. Indeed, the regression estimator is designed to combat the bias in the naive estimator,
and bias-reduced estimators usually entail increased variance. Moreover, the regression estimator
is essentially a weighted average of the samples, and with non-uniform weights one would expect
an increase in variance. The fact that the asymptotic variance only involves σ 2

i and not the variance
of the other systems is natural; the asymptotic analysis depends on the fact that asymptotically the
systems are correctly ordered by their sample means, and on that event the regression estimator
is based only on samples from the ith system.

The LC estimator is a convex combination of the naive and linear regression estimators, where
the weight ρ is random and is obtained from the same data used to construct the estimators. Ac-
cordingly, the results for consistency and mean-squared error are easily established. If the estimate
of ρ converges a.s. as the sample size goes to infinity, as would be the case if it is fixed at the outset
for example, then a central limit theorem for the LC estimator can also be established (Peng et al.
2017), but we do not provide that result, since it is a straightforward extension of the results we
have established.

Corollary 1. Under condition A1, the LC estimator ν̂i is a strongly consistent estimator of μi .

Under conditions A1–A3, its mean-squared error is O (n−1).

5 NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of our estimates of the simulation budget as
measured through the total number of samples. We use three efficient R&S procedures: the KN
procedure (Kim and Nelson 2001), the Bayes-inspired indifference zone (BIZ) procedure (Frazier
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Table 1. Problem Configurations Used in Numerical Experiments

Name Expectation Variances

Slippage Configuration (SC) μ = [δ , 0, . . . , 0] σ 2
i = σ 2 = 4

SC, increasing variances (SC-INC) μ = [δ , 0, . . . , 0] σ 2
i = (1 + 2i

k
)2

SC, decreasing variances (SC-DEC) μ = [δ , 0, . . . , 0] σ 2
i = (3 − 2i−2

k
)2

Monotone decreasing means (MDM) μi = −δ (i − 1) σ 2
i = σ 2 = 4

MDM, increasing variances (MDM-INC) μi = −δ (i − 1) σ 2
i = (1 + 2i

k
)2

MDM, decreasing variances (MDM-DEC) μi = −δ (i − 1) σ 2
i = (3 − 2i−2

k
)2

Random problem instances 1 (RPI1), μi ∼ N (0, 4δ 2), i.i.d. σ 2
i = σ 2 = 4

Random problem instances 2 (RPI2), μi ∼ N (0, 25δ 2), i.i.d. σ 2
i = σ 2 = 4

RPI, heterogeneous variances (RPI-HET), μi ∼ N (0, 25δ 2), i.i.d. σ 2
i = (1 + 2i

k
)2

2014) and the Good Selection Procedure (GSP) (Ni et al. 2017). The KN procedure is highly influen-
tial and might be considered the state-of-the-art for indifference zone R&S (Branke et al. 2007). It
compares all pairs of systems and eliminates inferior ones when certain random walks leave a tri-
angular continuation region, until one system remains. The BIZ procedure has a tight worst-case
preference-zone PCS bound for the known-variance case, and is empirically more efficient than
KN on a variety of problems. The GSP is designed for a parallel computing environment, and it
provides a PAC guarantee. Since we are only using the samples taken in the preliminary stage for
simulation budget prediction, those samples are reused as initial samples in the R&S procedures.
All the source code for our experiments is available in the open-source repository Ma (2016).

5.1 Comparison of Naive Estimation and Linear Combination Estimation

We demonstrate the difference in performance of the naive estimator and LC estimator on nine
standard test configurations: SC, SC-INC, SC-DEC, MDM, MDM-INC, MDM-DEC, RPI1, RPI2,
RPI1-HET, with three problem sizes: k = 100, 500, 2,000. These test configurations (and their
acronyms) are described in Table 1. For all configurations and problem sizes, the indifference zone
constant δ = 0.1 and the confidence level 1 − α = 0.95. We compare and illustrate the accuracy of
the estimators by the ratios of the estimator and the true value of the total number of samples N .
The results do not show significant difference between the three procedures, BIZ, KN and GSP, so
we only visualize the results for BIZ through histograms of the ratios under different configura-
tions with different k , as shown in Figures 6, 7, and 8. The results in the histograms come from
the simulation of the simulation process approach. The average ratio for all procedures and both
first-order estimate and simulation of the simulation process approaches are given in Tables 5 and 6
in the Appendix.

For the slippage configurations in Figure 6, the LC estimator performs consistently much better
than the naive estimator. We see that we usually underestimate the number of samples, perhaps
because the slippage configuration is difficult to recover. However, there is still a huge difference
between the performances of the naive estimator and linear combination estimator. The LC esti-
mator can achieve around 70% accuracy (the ratio of the estimator to the true value), and so we
expect that it can get the correct order of magnitude, which is enough for determining the number
of cores or how much computing resource is needed in practice. In comparison, the value of the
naive estimator is usually around 10% to 20% of the true value, and that can result in an incorrect
order of magnitude.
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Fig. 6. Histogram of ratios between estimation and true value of N . Test on BIZ under the following con-

figurations: SC (row 1), SC-INC (row 2), and SC-DEC (row 3); with k = 100 (column 1), 500 (column 2), and

2,000 (column 3).

Fig. 7. Histogram of ratios between estimation and true value of N . Test on BIZ under the following config-

urations: MDM (row 1), MDM-INC (row 2), and MDM-DEC (row 3); with k = 100 (column 1), 500 (column

2), and 2,000 (column 3).

For monotone decreasing means configurations in Figure 7, both estimators perform well. The
reason is that the means are already very clearly separated, so the “mean-spreading” phenomenon
is not severe in this case. In practice, we expect that both estimators should have good performance
for configurations with spread-out means.

For the random problem instances in Figure 8, the LC estimator performs well while the naive
estimator sometimes diverges from the truth. In those random instances when there are many
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Fig. 8. Histogram of ratios between estimation and true value of N . Test on BIZ under the following config-

urations: RPI1 (row 1), RPI2 (row 2), and RPI-HET (row 3); with k = 100 (column 1), 500 (column 2), and 2,000

(column 3).

good systems not too far away from the best, the LC estimator is still able to recover the original
configuration, while the naive estimator might be confused. The ratios between the LC estimator
and the true values are usually between 0.8 and 1.2, especially for large k . In comparison, the naive
estimator tends to underestimate.

In practice, we rarely see a real-world problem that is as difficult as the slippage configuration.
Usually the means are more spread out than the slippage configuration but more condensed than
the MDM configuration. In general, the LC estimator should be able to accurately reflect the true
configuration without being too “optimistic” or “pessimistic” about the running time.

The LC estimator performs better when k is large for condensed configurations (SC family and
RPI1), since with more information provided by more systems, it is able to more accurately estimate
the configuration. This is desirable, since we mainly focus on large-scale problems.

As shown in Table 6, the estimations obtained with the first-order approach are similar to those
obtained with the simulation approach and also have good performance.

5.2 An Illustrative Problem

In this section, we test our estimation of the total number of samples on the “throughput-
maximization” problem taken from SimOpt.org (Henderson and Pasupathy 2014). In this problem,
we want to solve

max
x

E [д(x ; ξ )] ,

s.t. r1 + r2 + r3 = R,

b1 + b2 = B,

x = (r1, r2, r3, r4, r5) ∈ {1, 2, . . .}5,

where the function д(x ; ξ ) represents the random throughput of a three-station flow line with
finite buffer storage in front of Stations 2 and 3, denoted by b2 and b3, respectively, and an infinite
number of jobs in front of Station 1. The processing times of each job at Stations 1, 2, and 3 are

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 3, Article 14. Publication date: June 2019.



14:22 S. Ma and S. G. Henderson

Table 2. Means and Standard Deviations of the

Ratios of Estimation to the True Value of the Sample

Sizes for the Illustrative Problem

n0
KN BIZ GSP

mean std mean std mean std
10 0.78 0.14 1.41 0.21 0.79 0.18
20 0.82 0.11 1.49 0.17 0.63 0.17
50 0.81 0.08 1.28 0.11 0.67 0.17

Table 3. Means and Standard Deviations of the

True Sample Sizes for the Illustrative Problem

(×105, Two Significant Figures)

n0
KN BIZ GSP

mean std mean std mean std
10 21 1.5 1.9 0.15 180 21
20 13 1.4 2.1 0.10 68 7.0
50 12 0.7 2.9 0.15 41 5.1

independently exponentially distributed with service rates r1, r2, and r3, respectively. The overall
objective is to maximize expected steady-state throughput by finding an optimal (integer-valued)
allocation of buffer and service rates. The warm-up period consists of 2,000 released jobs starting
from an empty system and the average throughput is then computed based on the time required for
the following 10 jobs. In practice one would estimate the throughput on many more jobs than the
following 10. We take the rather extreme choice of 10 jobs to increase the variability of the output
for this problem, to better demonstrate the performance of our proposed methods in scenarios
where the numbers of samples needed are high. For further details of this problem, see Henderson
and Pasupathy (2014).

For our test, we set R = B = 20, so that k = 3,249, and we set α = 0.05 and δ = 0.1. It takes 0.008s
to get one simulation sample on average, and there is no significant difference in simulation time
between different systems. We test our estimation for all three procedures, KN, BIZ, and GSP, using
simulation-of-the-simulation-process. To find out the impact of the initial sample size n0 on the
accuracy of the prediction and the computational effort of the prediction, we tried n0 = 10, 20, and
50 for all cases. All other parameters of the procedures take their default values.

The ratios of estimates and true values are given in Table 2. All of the estimates are reason-
ably accurate, suggesting that the estimation procedure is practical. Further, for different values
of n0, the results show that there is no significant change in the accuracy of the prediction for
this problem as n0 varies. Table 3 gives statistics on the total sample size required by each of the
procedures as n0 varies. As n0 increases, the total sample size increases only for BIZ, and not by
a huge amount, though certainly by a nontrivial amount. For the other procedures, the sample
size decreases, due to a more confident prediction of the system variances that is exploited in the
procedures. (BIZ uses a heuristic to handle estimated variances.) This suggests that the recommen-
dation for R&S algorithms of using n0 on the order of 10 or 20 is only a rule of thumb, and other
choices may be better. Taking n0 larger is useful, though not essential, for our regression-based
estimation procedure. The choice of n0 = 50 seems reasonable in general.

The computational time spent running the R&S procedure and in predicting the necessary sim-
ulation budget is given in Table 4. For all procedures, the time spent on simulations dominates,
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Table 4. Average Total Running Time for the R&S Procedure and for the

Prediction of Running Time for the Illustrative Problem (Seconds, Two

Significant Figures)

n0
KN BIZ GSP

R&S predicting R&S predicting R&S predicting
10 1,000 7.3 140 1.4 7,800 1.7
20 630 9.1 140 1.7 2,800 2.0
50 610 12 200 2.1 1,700 2.4

with the predictions requiring at most a few percent of the time spent running simulations. This
model is very simple and getting one replication takes only milliseconds. For more complicated
models the ratio between the length of the time for making the prediction and for running the R&S
procedure would be even smaller. We conclude that our predictions introduce negligible overhead.
As a side note, GSP required significantly more computation than KN or BIZ in this instance. That
may be due to a poor choice of the tunable parameters for GSP, or a good choice for those of KN.
We did not attempt to tune these parameters, since our focus is on predicting computational effort.

We conclude this section by providing a sense of how the predictions can be used to select the
number of cores in a parallel implementation. In doing so, we use the mean sample size predictions
in Table 3 as if they were the predictions of the simulation budget, and the running-time informa-
tion in Table 4 as if it gave the predicted running time obtained by scaling the predicted simulation
budgets by average computational time obtained in the prediction stage. Of course, this means we
are using actual running time values rather than the predictions in our explanation, which we
do simply, because it means we need not provide additional information on the predictions; the
decision process is the same. The decision process is simply to choose the number of cores, c say,
so that the total computation time divided by c is on the order of the desired wall-clock computa-
tion time. An additional check is that the total number of simulation replications needed is large
enough relative to c that one would expect a well-implemented R&S procedure to be able to effi-
ciently distribute the computation across the cores. If the number of replications per core is too
small, e.g., less than a few hundred, then we should be cautious of the heuristic of dividing total
computation by available cores, which assumes perfect utilization of cores.

The running-times in Table 4 for n0 = 50 (our proposed choice of n0) suggest that both KN and
GSP will be time-consuming, requiring on the order of 600 and 1,700s of computation, respectively.
If we want the R&S procedure to conclude within, say, 1 or 2min, then we would require on the
order of 10 and 30 cores for the two procedures, respectively. The number of needed replications
from Table 3 is so large that one expects a well-implemented R&S procedure to be able to efficiently
use the cores, so we expect that the procedures would be very likely to finish within 2min. Similarly,
if one wanted to finish within a few seconds, then we would instead need on the order of 600 and
2,000 cores for the two procedures, respectively. KN requires on the order of 1.2 million replications
overall, again suggesting that the recommended number of cores (600) could be efficiently used.
This would not be the case if we wanted to finish in a small fraction of a second, however, since
then the number of replications per core gets so low that one expects synchronization issues and
the like to play a role.

The quality of this approximation for wall-clock running times as a function of the number of
cores depends on using reasonably efficient parallel implementations of R&S procedures. Several
recent papers discuss such parallel implementations. Some state-of-the-art schemes and design
principles are discussed in Hunter and Nelson (2017). In Luo et al. (2015), vector-filling (VF) pro-
cedures and asymptotic parallel selection procedures are proposed to efficiently exploit parallel
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computing environments. Ni et al. (2017) proposed the “good selection procedure,” and they com-
pared different parallel implementations on several criteria including synchronization and uti-
lization of the cores. The Message-Passing Interface (MPI) implementation achieves greater than
50% utilization (the ratio between total simulation time to the summed-up wall-clock time over
all cores) in all configurations. For implementations of parallel R&S procedures with reasonable
utilization rates such as these, our approach gives sufficiently reliable predictions of wall-clock
computation time, though of course our predictions may be very poor for poor implementations
with very low utilization rates.

The running time for generating a single replication of this simple example is very small, so
the order of the predictions above are modest. For more complex simulation models where the
total computation required to complete all of the simulation replications for all systems, if run
on a single processor, is on the order of days, the prediction tools outlined in this article become
more important and relevant. This is especially the case in some cloud-computing settings where
the setup time at the start of a computation can be on the order of minutes. (Our simple heuris-
tic for estimating wall-clock running times ignores setup.) In such settings, for target wall-clock
computing times that are on the order of hours or more, our procedure is highly relevant and
worthwhile.

6 CONCLUSIONS

In this article, we explored the problem of predicting the simulation budget of R&S procedures,
which is important when dealing with large-scale problems. We presented two approaches for esti-
mating the total number of samples needed for a R&S procedure to terminate, both of which rely on
the estimation of the problem configuration, which is not trivial. We develop a linear combination
estimator that exhibits excellent performance in a realistic setting, and reasonable performance
even in the slippage configuration. Experimental results for both synthetic test problems and a
realistic problem together suggest that our approach is effective and sufficient for application.
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ances. Sankhyā: Indian J. Stat., Ser. B (1975), 28–78.

Weiwei Fan, L. Jeff Hong, and Barry L. Nelson. 2016. Indifference-zone-free selection of the best. Operat. Res. 64, 6 (2016),

1499–1514.

Peter I. Frazier. 2014. A fully sequential elimination procedure for indifference-zone ranking and selection with tight bounds

on probability of correct selection. Operat. Res. 62, 4 (2014), 926–942.

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 3, Article 14. Publication date: June 2019.



Predicting the Simulation Budget in Ranking and Selection Procedures 14:25

Peter W. Glynn and Philip Heidelberger. 1990. Bias properties of budget constrained simulations. Operat. Res. 38 (1990),

801–814.

David Goldsman, Seong-Hee Kim, William S. Marshall, and Barry L. Nelson. 2002. Ranking and selection for steady-state

simulation: Procedures and perspectives. INFORMS J. Comput. 14, 1 (2002), 2–19.

Shanti Swarup Gupta. 1956. On a Decision Rule for a Problem in Ranking Means. Ph.D. Dissertation. University of North

Carolina at Chapel Hill.

Donghai He, Stephen E. Chick, and Chun-Hung Chen. 2007. Opportunity cost and OCBA selection procedures in ordinal

optimization for a fixed number of alternative systems. IEEE Trans. Syst., Man, Cybernet., Part C (Appl. Rev.) 37, 5 (2007),

951–961.

Shane G. Henderson and Raghu Pasupathy. 2014. Simulation optimization library. Retrieved from http://www.simopt.org.

L. Jeff Hong. 2006. Fully sequential indifference-zone selection procedures with variance-dependent sampling. Naval Res.

Logist. 53, 5 (2006), 464–476.

L. Jeff Hong, Jun Luo, and Ying Zhong. 2016. Speeding up pairwise comparisons for large scale ranking and selection. In

Proceedings of the Winter Simulation Conference. IEEE Press, 749–757.

Susan R. Hunter and Barry L. Nelson. 2017. Parallel ranking and selection. In Advances in Modeling and Simulation. Springer,

249–275.

June Young Jung, Gary Blau, Joseph F. Pekny, Gintaras V. Reklaitis, and David Eversdyk. 2004. A simulation-based op-

timization approach to supply chain management under demand uncertainty. Comput. Chem. Engineer. 28, 10 (2004),

2087–2106.

Nabil Kahale. 2008. Analytic crossing probabilities for certain barriers by Brownian motion. Ann. Appl. Probabil. 18, 4 (2008),

1424–1440.

Seong-Hee Kim and A. B. Dieker. 2011. Selecting the best by comparing simulated systems in a group of three. In Proceedings

of the Winter Simulation Conference. IEEE, 3992–4002.

Seong-Hee Kim and Barry L. Nelson. 2001. A fully sequential procedure for indifference-zone selection in simulation. ACM

Trans. Model. Comput. Simul. 11, 3 (2001), 251–273.

Seong-Hee Kim and Barry L. Nelson. 2006. On the asymptotic validity of fully sequential selection procedures for steady-

state simulation. Operat. Res. 54, 3 (2006), 475–488.

Jun Luo, L. Jeff Hong, Barry L. Nelson, and Yang Wu. 2015. Fully sequential procedures for large-scale ranking-and-selection

problems in parallel computing environments. Operat. Res. 63, 5 (2015), 1177–1194.

Sijia Ma. 2016. RnS running time. Retrieved from https://github.com/sjasonma/RnSRunningTime.

Matthew S. Maxwell, Shane G. Henderson, and Huseyin Topaloglu. 2013. Tuning approximate dynamic programming

policies for ambulance redeployment via direct search. Stochast. Syst. 3, 2 (2013), 322–361.

Barry L. Nelson and Souvik Banerjee. 2001. Selecting a good system: Procedures and inference. IIE Trans. 33, 3 (2001),

149–166.

Eric C. Ni, Dragos F. Ciocan, Shane G. Henderson, and Susan R. Hunter. 2017. Efficient ranking and selection in parallel

computing environments. Operat. Res. 65, 3 (2017), 821–836.

Eric C. Ni, Shane G. Henderson, and Susan R. Hunter. 2014. A comparison of two parallel ranking and selection procedures.

In Proceedings of the Winter Simulation Conference. IEEE Press, 3761–3772.

Yijie Peng, Edwin K. P. Chong, Chun-Hung Chen, and Michael C. Fu. 2018. Ranking and selection as stochastic control.

IEEE Trans. Automat. Control 63, 8 (2018), 2359–2373.

Yijie Peng, Michael C. Fu, Peter W. Glynn, and Jianqiang Hu. 2017. On the asymptotic analysis of quantile sensitivity

estimation by Monte Carlo simulation. In Proceedings of the Winter Simulation Conference. IEEE, 2336–2347.

Yosef Rinott. 1978. On two-stage selection procedures and related probability-inequalities. Commun. Stat.-Theory Methods

7, 8 (1978), 799–811.

Moshe Shaked and George Shanthikumar. 2007. Stochastic Orders. Springer Science & Business Media.

S. R. Srinivasa Varadhan. 2007. Stochastic Processes, vol. 16. American Mathematical Society.

Received January 2018; revised February 2019; accepted March 2019

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 3, Article 14. Publication date: June 2019.

http://www.simopt.org
https://github.com/sjasonma/RnSRunningTime.

